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Abstract: Researchers have proposed a wide range of categorization schemes in order to characterize
the space of VR locomotion techniques. In a previous work, a typology of VR locomotion techniques
was proposed, introducing motion-based, roomscale-based, controller-based, and teleportation-based
types of VR locomotion. The fact that (i) the proposed typology is used widely and makes a significant
research impact in the field and (ii) the VR locomotion field is a considerably active research field,
creates the need for this typology to be up-to-date and valid. Therefore, the present study builds on
this previous work, and the typology’s consistency is investigated through a systematic literature
review. Altogether, 42 articles were included in this literature review, eliciting 80 instances of 10 VR
locomotion techniques. The results indicated that current typology cannot cover teleportation-based
techniques enabled by motion (e.g., gestures and gazes). Therefore, the typology was updated, and a
new type was added: “motion-based teleporting.”
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1. Introduction

After the major hardware-driven revival that virtual reality (VR) has undergone over
the past decade, the VR locomotion field, i.e., the domain about the ability to navigate
in VR environments, has gained much research interest. During the past few years, vari-
ous locomotion techniques have been developed and proposed to accommodate system
capabilities, task demands, and user preferences [1,2]. However, the fact that these tech-
niques must be tailored to each specific use context renders the search for new and better
locomotion techniques far from over [1,2]. To characterize the space of VR locomotion pos-
sibilities, researchers have proposed various categorization schemes [1] that use different
terms–e.g., metaphors, taxonomies, attributions, and typologies–offering a structure that
clusters similar techniques and provides a high-level view that can help researchers and
practitioners in this field quickly identify whole groups of locomotion techniques [1,2]. For
example, the work of Prinz et al. [2] provides an extensive overview of the taxonomies and
categorizations of locomotion techniques over time (1994 to 2020), as well as examines their
common elements and the research impact that they have made.

In a previous work, a typology of VR locomotion techniques was proposed (Figure 1)
based on an analysis of a systematic literature review’s results [3]. The review analyzed
the VR locomotion techniques that have been studied from 2014–2017, their interaction-
related characteristics, and the research topics addressed in these studies [3]. Altogether,
36 articles were included in that literature review, which elicited 73 instances of 11 VR
locomotion techniques, e.g., real-walking, walking-in-place, point and teleport, joystick-
based locomotion et al. [3].

The literature review’s results [3] allowed for classification of VR locomotion tech-
niques, and the documentation of the techniques’ interaction aspects led to the develop-
ment of the classification categories, i.e., interaction type, VR motion type, and VR interaction
space [3]. Interaction type “describes the way in which the user triggers VR navigation” [3].
Therefore, locomotion can be physical, i.e., “exploiting physical motion cues for navigation

Multimodal Technol. Interact. 2022, 6, 72. https://doi.org/10.3390/mti6090072 https://www.mdpi.com/journal/mti

https://doi.org/10.3390/mti6090072
https://doi.org/10.3390/mti6090072
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mti
https://www.mdpi.com
https://orcid.org/0000-0003-2741-8127
https://orcid.org/0000-0001-9605-1782
https://doi.org/10.3390/mti6090072
https://www.mdpi.com/journal/mti
https://www.mdpi.com/article/10.3390/mti6090072?type=check_update&version=1


Multimodal Technol. Interact. 2022, 6, 72 2 of 14

and translating natural movement to VR motion through some kind of body tracking,” or it
can be artificial, i.e., “utilizing input devices to direct VR motion and navigation [4]” [3]. VR
motion type “assesses the nature of the user’s motions in the VR environment” [3] and can
be continuous, “supporting smooth, uninterrupted movement in the virtual environment,”
or non-continuous “providing instantaneous, non-continuous movement transitions [5]” [3].
Finally, VR locomotion techniques may operate in an open VR interaction space, “supporting
navigation in a virtual environment that surpasses the limits of the real environment,” or
they can offer limited interaction space “due to the limitations that the physical environment
places on the size of the virtual one [6]” [3].

Figure 1. The VR locomotion typology, as presented in [3].

Consequently, based on [3], the documented VR locomotion techniques were assigned
to the classification categories, creating four distinct VR locomotion types (visualized in
Figure 1):

• Motion-based:“The VR locomotion techniques under this type utilize some kind of
physical movement to enable interaction, while supporting continuous motion in open
VR spaces. This VR locomotion type includes such techniques as walking-in-place,
redirected walking, arm swinging, gesture-based locomotion and reorientation” [3].

• Room scale-based: “This VR locomotion type utilizes physical movement to enable
interaction, and it supports continuous motion (as with the motion-based type); how-
ever, the interaction takes place in VR environments whose size is limited by the
real environment’s size. ... The real-walking locomotion technique falls under this
type” [3].

• Controller-based: “For this VR locomotion type, controllers are utilized to move the
user artificially in the VR environment. The VR interaction space is open, and the
motion is continuous. This type includes such techniques as joystick-based, human
joystick, chair-based and head-directed locomotion” [3].

• Teleportation-based: “The VR locomotion techniques under this type utilize artificial
interactions in open VR spaces with non-continuous movement, as the user’s virtual
viewpoint is instantaneously teleported to a predefined position by utilising visual
‘jumps’. Point and teleport is a VR locomotion technique that falls under this type” [3].

When discussing these type’s typology and characteristics, Boletsis [3] stated: “Motion-
based locomotion differs from room scale-based in terms of their VR interaction space, while
controller-based locomotion differs from teleportation-based in terms of their VR motion type.
Motion-based and room scale-based locomotion differ from controller-based and teleportation-
based locomotion in terms of their interaction type. Furthermore, the analysis of the reviewed
VR locomotion techniques showed that techniques with physical interaction presented solely
continuous VR motion, while artificial techniques were exclusively facilitating navigation in
open, unlimited VR environments.”

The proposed typology of Boletsis [3] was created to be “a useful tool for researchers
and users who want to present and describe the features of a VR locomotion technique uti-
lizing a standardized description that clearly distinguishes one technique from another” [3].
Simultaneously, the types were constructed to “serve as a common ground for researchers
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of Human-Computer Interaction and VR and the public who uses these systems to commu-
nicate the interaction aspects and functionalities that were previously difficult to describe
and classify, thus enhancing the field’s social impact” [3].

Up until now, the work of Boletsis [3] with the proposed typology has been reported
by Prinz et al. [2] as one of the publications with the greatest impact on the VR locomotion
research field based on citations per year metrics. The typology so far has been utilized in
several works to describe VR locomotion techniques’ characteristics and interaction elements
in areas such as video games [7] and commercial social VR platforms [8]. Moreover, it has
been used in several comparative studies to justify the selection of certain VR locomotion
techniques [9–13]. The fact that (i) the proposed typology of [3] is used widely [7–13] and is
considered to have a significant research impact in the field [2] and (ii) the VR locomotion field
is a considerably active research field [1,2], creates the need for this typology to be up-to-date
and valid.

This work builds on Boletsis [3] and its future-work direction (Section 5 of [3]). The
proposed typology therein was presented as a preliminary classification scheme for re-
searchers, users, and developers of the field. The aim of this work is to take the typology to
the next maturity level, evaluating it and, ultimately, making it more relevant to the latest
developments in the VR locomotion field, so that it can keep being a useful tool for its
target group. To do so, the typology’s consistency and contemporary value is investigated
by examining how the VR locomotion techniques presented in the 2021 research fit into the
proposed typology of [3] and whether new VR locomotion types need to be created and/or
whether existing ones should be adjusted. To document the VR locomotion techniques of
2021 and their characteristics, a systematic literature review is conducted.

This paper is organized as follows. The literature review methodology is described
in Section 2, and the review is presented in Table 1. The findings from the review process
are presented in Section 3, and a discussion of the key findings and study limitations is
presented in Section 4. The paper concludes in Section 5.

2. Methodology

This study conducts a theoretically grounded evaluation of the proposed typology of
Boletsis [3] based on a systematic review of the existing VR locomotion literature. The sys-
tematic literature review aims to document VR locomotion techniques and assess whether
they fit under the proposed typology, thereby investigating the typology’s consistency.

In the base article (cf. [3]), a literature review was implemented in an explorative
way to map out the VR locomotion field and its interaction aspects, and the proposed
typology of VR locomotion techniques was a product of the review. In this article, the
typology is prioritized, i.e., it is the subject of the main research question, and the literature
review is used as a more focused methodological means to examine the typology’s consis-
tency. Consequently, the literature review’s role herein is to supplement, but not lead, this
article’s narrative.

The literature review uses the same methodology as that used in [3], so that method-
ological consistency – and, thus, comparability of results between the two studies – is
achieved. Replication of the methodology in [3] can ensure that the results regarding
the typology and VR locomotion’s current state-of-the-art are solely a product of a valid
comparison between VR locomotion techniques from different time periods, and that these
results are not skewed, nor affected by some methodological differences between studies.

Therefore, this literature review also has been undertaken as a systematic literature
review based on the original guidelines as proposed by Kitchenham [14], which align
with the PRISMA guidelines [15], though they are specific to software engineering and
can be viewed as more focused for purposes of the topic examined herein [16,17]. A
review protocol based on the Kitchenham guidelines, the PRISMA-P checklist [18], and
the methodology of Boletsis [3] was developed before the review was conducted and
has been used as a guide to conduct the review. The review protocol can be retrieved
at https://boletsis.net/mti2022/review-protocol.pdf (accessed on 17 August 2022). The

https://boletsis.net/mti2022/review-protocol.pdf
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review’s methodology is described fully hereafter for improved readability purposes, even
though parts of the methodology used in [3] are replicated and repeated.

Finally, the literature review focuses on recently studied VR locomotion techniques,
with the latest technical VR advances included in the studied VR locomotion techniques,
thereby assessing the contemporary value of the investigated VR locomotion typology
effectively. The year 2021 was chosen as the time period for documenting the recently
studied VR locomotion techniques based on pilot literature searches (see also Section 2.2).

2.1. Research Questions

To assess the typology’s consistency, a main research question (MRQ) and two research
subquestions (RQ1 and RQ2) are formulated and investigated:

• MRQ: To what degree can recently studied VR locomotion techniques be classified
under the proposed VR locomotion typology of Boletsis [3]?

• RQ1: Which VR locomotion techniques have been studied recently?
• RQ2: What are the interaction-related characteristics of the recently studied VR loco-

motion techniques?

2.2. Search Strategy

As in [3], a systematic search of the literature was performed in the Scopus academic
search engine, which searches through the ACM and IEEE databases, along with other
publishers’ databases, e.g., Elsevier, Springer, Taylor & Francis, Sage, Emerald, Oxford
University Press, Cambridge University Press et al. Apart from the wide coverage of
the examined field, Scopus also was chosen due to its flexible result-filtering capabilities
[3,19,20].

To define an appropriate study sample size for evaluating the typology and further
define the search period, i.e., the temporal element of the RQs expressed by “recently”,
the Kitchenham guidelines were followed. Based on those, pilot literature searches were
conducted using the keywords from Boletsis [3] and starting from the latest complete
publication year when the search took place (2022), i.e., 2021, going backward. The sample
size of Boletsis [3] that produced the proposed typology defined the threshold for the
targeted sample size. The pilot search in 2021 alone provided strong indications that the
necessary sample size for assessing the typology could be acquired and, therefore, this year
was included in the search query.

The publications’ abstracts were utilized to retrieve relevant articles, utilizing the
following Scopus database advanced-search query string:

ABS ((“locomotion” OR “navigation technique”) AND (“empirical” OR “studied” OR “study”
OR “evaluation” OR “evaluate” OR “examination” OR “examine”) AND (“virtual reality” OR
“virtual environment” OR “virtual world”)) AND (LIMIT-TO (PUBYEAR, 2021))

Finally, applicable articles also were identified through backward reference search-
ing [21]. Scopus, Google Scholar, and Web of Science were utilized for this purpose to run
general searches of specific references and to identify relevant articles [3].

2.3. Inclusion and Exclusion Criteria

The inclusion and exclusion criteria described in [3] also were used in this review. Peer-
reviewed articles published between January 2021 and December 2021 with the following
characteristics were included:

• those written in English,
• those that included at least one VR locomotion technique,
• those that included a user study that examined direct or indirect aspects of the VR

locomotion technique(s),
• those that included a fully immersive VR setup utilizing head-mounted displays

(HMDs) [3].
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The peer-review process adds to the publications’ credibility and reliability [3]. The
conduct of user studies evaluating VR locomotion techniques ensures that these techniques
exist, are usable, and operate beyond the conceptual level [3]. HMD-based, fully-immersive
VR was included so that the technology used for the techniques’ development is up-to-date
and relevant for researchers , as well as regular users, who now have access to low-to-
medium-cost HMD systems [3].

Consequently, articles with the following characteristics were excluded:

• those that utilized solely projection-based, desktop-based, or tablet-based virtual
environments,

• those that addressed solely conceptual VR locomotion topics (theoretical models,
frameworks, literature reviews et al.),

• those that did not include an empirical, user study,
• those that utilized VR locomotion techniques as a technological/research tool for

studying an unrelated topic [3].

2.4. Screening Process and Results

Figure 2 visualizes the screening process and its results. The full list of articles can be
retrieved at https://boletsis.net/mti2022/scopusresults-2021.pdf (accessed on 17 August 2022).
The screening process was based on the articles’ full text, and both authors screened the
articles at every step in the process. Ultimately, 42 articles were included in the review, and
both authors reviewed all articles independently. The two authors/reviewers conjointly
shaped the review’s categories based on the data-extraction process and the previously
formed categories of Boletsis [3]. The review’s final validation exercise demonstrated a
high level of agreement between the authors/reviewers (>80%), and any disagreements
were discussed and settled.

Figure 2. Flowchart of included/excluded articles.

2.5. Data Collection

The screening process elicited 42 articles that satisfied the inclusion criteria. As in [3],
the data extracted from each article included:

• the full reference,

https://boletsis.net/mti2022/scopusresults-2021.pdf
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• the description and title of the VR locomotion technique(s),
• the interaction aspects of the VR locomotion technique(s) (e.g., interaction type, move-

ment type, VR interaction space, devices).

If data were missing, the study’s authors were contacted. The two authors/reviewers
conjointly performed the data-extraction process.

2.6. Data Analysis

Identification of the VR locomotion techniques and their interaction aspects was
based on the descriptions that the articles provided, as cross-checked with other related or
reviewed publications in the field, to establish their scientific soundness, mainly towards
nomenclature and interaction features [3]. The identified techniques and their interaction
aspects then were normalized and classified into a concept matrix (addressing RQ1 and
RQ2) based on the classification of the base article’s typology (Figure 1). This way, the
matrix facilitates the identification of any deviation(s) from the base article and addresses
the MRQ. Comparative studies that included two or more locomotion techniques were
tabulated in a respective number of rows [3]. Table 1 provides the literature review’s
concept matrix.

3. Results

The literature review documented 80 instances of 10 locomotion techniques in the
42 reviewed articles (Table 1). The walking-in-place locomotion technique was the most
utilized (17 instances), followed by the controller/joystick-enabled locomotion technique
(15 instances). The documented VR locomotion techniques and their numbers of instances
are visualized in Figure 3 and answer RQ1. Their descriptions, based on their features
and characteristics, are covered in Section 3.1 of [3], except for the gaze-based technique,
which features users having their eye movements tracked by HMD-integrated, eye-tracking
technologies (e.g., infrared lights and cameras) to control navigation [22].

Figure 3. The number of instances of the 10 locomotion techniques, as documented from the 42
reviewed articles.

By classifying the documented VR locomotion techniques’ interaction aspects based
on the base article’s typology, thereby answering RQ2, it became obvious that certain
locomotion techniques (highlighted in a red font in Table 1, cf. [23,24]) and their VR
locomotion types were not covered by the typology, thereby answering the MRQ. All these
locomotion techniques featured teleportation, but their interaction type was physical and
not artificial, as per the base article’s typology (Figure 1).
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Table 1. The reviewed techniques and their interaction aspects, classified into a concept matrix
based on the proposed typology of Boletsis [3]. Techniques that are not covered by the typology are
highlighted in red.
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Shimizu and Nakajima [25] X X X X X
Liu et al. [23] X X X X X

X X X X X
X X X X ? ? ? ?

Brument et al. [26] X X X X X
Kim et al. [9] X X X X X

X X X X X
X X X X X

X X X X X
Freiwald et al. [27] X X X X X

X X X X X
Dresel and Jochems [28] X X X X X

X X X X X
Xing and Saunders [29] X X X X X
Mousas et al. [30] X X X X X

X X X X X
X X X X X

X X X X X
Keung et al. [31] X X X X X
Oumard et al. [32] X X X X X
Adhanom et al. [33] X X X X X
Arrighi et al. [34] X X X X X

X X X X X
Motyka et al. [35] X X X X X
Weissker and Froehlich [36] X X X X X
Schäfer et al. [24] X X X X ? ? ? ?

X X X X ? ? ? ?
X X X X ? ? ? ?
X X X X ? ? ? ?

Englmeier et al. [37] X X X X X
Ke and Zhu [38] X X X X X

X X X X X
X X X X X

Gao et al. [39] X X X X X
X X X X X

X X X X X
X X X X X

Nie and Rosenberg [40] X X X X X
Stein [22] X X X X X
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Table 1. Cont.
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Cannavò et al. [41] X X X X X
X X X X X
X X X X X

X X X X X
Zhang et al. [42] X X X X X
Sun [43] X X X X X
Khundam [44] X X X X X

X X X X X
X X X X X

Tastan et al. [45] X X X X X
Otaran and Farkhatdinov [46] X X X X X
Kim and Xiong [47] X X X X X
Mittal et al. [48] X X X X X
de Oliveira et al. [49] X X X X X
Prithul et al. [50] X X X X X

X X X X X
Kim et al. [51] X X X X X

X X X X X
X X X X X

Khundam and Nöel [52] X X X X X
X X X X X

Wehden et al. [11] X X X X X
X X X X X

Awada et al. [53] X X X X X
X X X X X

Taylor and Cinelli [54] X X X X X
Buttussi and Chittaro [55] X X X X X

X X X X X
X X X X X

Mayor et al. [56] X X X X X
X X X X X

X X X X X
X X X X X

Schnack et al. [57] X X X X X
X X X X X

Cherni et al. [58] X X X X X
Atkins et al. [59] X X X X X
Chojecki et al. [60] X X X X X

X X X X X
X X X X X

Drewes et al. [61] X X X X X

4. Discussion

In this section, the review’s results are discussed mainly by using the base article [3]
as a point of reference to establish research continuity and simultaneously approach the
goal of generalizing the elicited results. Naturally, other related articles were used in the
results’ analysis as well.
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This discussion focuses on an examination of the typology’s consistency and a new
VR locomotion type that leads to an updated version of the typology (Section 4.3). More-
over, some observations can be made regarding the VR locomotion field’s current status
concerning expressed research interest (Section 4.1) and prevalent techniques (Section 4.2).
The study’s limitations also are discussed (Section 4.4).

4.1. Research Interest for VR Locomotion

A main observation from the literature review’s results is that the search query for
2021 that was conducted elicited more reviewed articles and instances of VR locomotion
techniques than the base article [3], which covered four years (2014–2017). Both articles
used the same literature search strategy, adjusted for different years, as well as the same
exclusion/inclusion criteria for the review.

In this article, the search elicited 61 articles, with their screening process eventually
yielding 42 reviewed articles after a backward referencing search, documenting 80 instances
of 10 locomotion techniques. In the base article by Boletsis [3], the search elicited 92 arti-
cles, with the screening process yielding 36 articles after a backward referencing search.
Ultimately, 73 instances of 11 locomotion techniques were documented.

Simultaneously, a similar set of VR locomotion techniques was documented herein
compared with the base article. This article contains no instances of reorientation and
human joystick techniques, as in [3], but one gaze-based technique instance was found [22].

The comparison of the quantitative literature review’s results for the two time periods
covered in the two articles (2014–2017 vs. 2021) may attest to a growing research interest in
VR locomotion over time. Research is highly active in this field, with researchers trying
to address questions around usability and user experience of various existing techniques,
re-examining updated VR locomotion techniques (e.g., gaze-based) in a new light, or
developing new techniques. This also may suggest that when researching VR locomotion
techniques, no definitive/static answer exists for a related research question because the
experiential qualities that these techniques possess can be connected closely to and affected
by their hardware, while VR and HMD hardware constantly is upgraded and improved.

4.2. Prevalent VR Locomotion Techniques

This study’s literature review confirmed that the prevalent VR locomotion techniques
are the walking-in-place (WIP), teleportation, and controller/joystick-based techniques,
corresponding with related literature [62].

Walking-in-place (WIP) is still a prevalent VR locomotion technique (corresponding
with the results from [3]). When looking more closely into the studies using WIP, a
considerable number of them used treadmills for motion performance [11,31,35,41,53,58],
which may suggest a need for “a more explicit focus on the perceived naturalness of WIP
techniques; i.e., the degree to which WIP locomotion feels like real walking” [63]. Achieving
higher levels of immersion may be the goal here, and more work on that topic, theoretical
or technical, could be a promising research direction.

As for teleportation, in the base article [3], the following remarks were made: “...the
VR teleportation technique is not studied or utilized as much” and “...this represents a
discovered gap that can be addressed by future studies on VR locomotion.” Apparently,
this gap was addressed since then, and based on this review’s results, VR teleportation
is implemented and studied at a high degree, presenting more instances even than the
controller/joystick (Figure 3). The fact that new teleportation implementations have been
taken place—e.g., foot gestured-based teleportation [23], hand gesture-based teleportation
[24], world-in-miniature teleportation [37], and menu-style teleportation [34]–might suggest
rising interest in the technique and its interaction metaphors.

4.3. Motion-Based Teleporting Type

So far, based on the base article’s typology (Figure 1), teleportation techniques fea-
tured only the artificial interaction type. In the “Study Limitations” section of that article
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(Section 4.4 of [3]), it has been noted that “... a VR locomotion technique can integrate two
or more locomotion techniques to facilitate navigation. For instance, point and teleport
[6] utilizes gesture-based interaction to point to where the user wants to go, and the main
motion takes place through teleportation... In this review, the VR locomotion techniques
that integrate elements from other techniques were analyzed based on their dominant
interaction aspects. In the aforementioned example, point and teleport was categorized as
a teleportation-based technique, despite its gesture-based interaction aspects.”

The fact that ‘hybrid” VR locomotion techniques have been developed that inte-
grate two or more locomotion techniques to facilitate navigation poses a challenge when
documenting VR locomotion techniques, which is addressed by distinguishing between
dominant and secondary interaction aspects based on the techniques’ descriptions in the
respective studies. When this strategy was applied to teleportation techniques with motion-
based characteristics in the base article, few examples of these techniques were found from
the examined 2014-2017 period (cf. [6]). Therefore, no notable results on those techniques
were elicited. However, based on the present literature review’s results (Table 1), five
instances of teleportation techniques are not covered by the typology of Boletsis [3] (high-
lighted with a red font in Table 1). These five instances appear in works by Liu et al. [23]
and Schäfer et al. [24], featuring teleportation techniques with physical interaction type.

Upon further investigation, the literature review on teleportation techniques by Prithul
et al. [64] provided a detailed list of related techniques and studies, confirming this review’s
findings. Indeed, several VR teleportation techniques were enabled through physical interaction,
as this review’s findings also suggest. VR teleportation techniques can be motion-based,
e.g., gesture-based teleportation [23,24], gaze-based teleportation [65], and redirected
teleportation [66]. These techniques “inherit” the respective non-teleporting techniques’
descriptions (Section 3.1 of [3]), but differ based on their non-continuous VR motion.

Therefore, an update to the proposed typology of Boletsis [3] is necessary to reflect
a new type: “motion-based teleporting.” The VR locomotion techniques under this type
utilize physical movement (e.g., using hands, feet, or eyes) to enable interaction, while
supporting non-continuous motion (visual “jumps” [3]) in open VR spaces. This type
features physical interaction mechanics compared with the one that has artificial interaction
mechanics, now called “controller-based teleporting”. The formulated nomenclature for
the other VR locomotion types was used to name the new additions and differentiate
between them. Figure 4 presents the typology’s updated version with some examples of
VR locomotion techniques. It is expected that several non-teleporting techniques can have
teleporting equivalents (e.g., head-directed teleportation can be implemented, falling under
the controller-based teleporting type).

Figure 4. The updated typology of VR locomotion techniques.

4.4. Study Limitations

This study features certain compromises or assumptions that can be viewed as limitations.
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• As stated above, a “hybrid” VR locomotion technique is possible, i.e., a technique
integrating two or more other techniques. An example would be a joystick-based
teleportation technique combined with real-walking. In this review, these techniques
were documented based on the dominant VR locomotion technique, always according
to the focus and descriptions in the respective reviewed articles.

• Considering that the literature review methodology of Boletsis [3] was utilized, the
following limitation also was present: “The database query of the review is based on a
predefined set of search terms. The defined search strategy conforms to the established
procedures for systematic literature reviews [14]; however, with VR being a dynamic
technical and research field, predefined sets of search terms might not be able to cover
the number of works that utilize new or unestablished terminology.”

• As in [3], the results of the reviewed, empirical studies were not included in the review;
therefore, no information was available on the documented VR locomotion techniques’
performance. Focusing on the techniques’ performance was viewed as falling outside
the scope of constructing a typology of VR locomotion techniques. The focus on
the techniques’ identification and the frequency of implementation in research were
viewed as more relevant to the typology and to the study’s RQs.

5. Conclusions

This study builds on the work of Boletsis [3], and the VR locomotion typology’s
consistency is investigated. A systematic literature review resulted in an analysis of the
interaction attributes of 80 instances of VR locomotion techniques from 42 studies. They
typology of Boletsis [3] could not cover teleportation-based techniques enabled by physical
interaction; therefore, the typology was updated by introducing a new VR locomotion type:
“motion-based teleporting.” This typology, just like its predecessor, can help researchers
and practitioners in the field position their work in the field while acquiring a high-level
view of the state-of-the-art.

Future work could include: (i) conducting a systematic literature review covering the
period between 2018 and the latest complete publication year, thus supplementing and
extending the literature review of Boletsis [3]; and (ii) following up on advances regarding
new or updated VR locomotion techniques to confirm the updated typology’s consistency
presented herein further.
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